
20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 1/25

How to add AI to Clinicaltrials.gov

Author: Josva E. Jensen

Date: 20th December 2018

Clinical trials are designed to answer speci�c questions about biomedical or behavioral interventions in

clinical research in the pharmaceutical industry. Clinicaltrials.gov is a huge data base with around 500 new

uploaded studies every week from around the world. Whit access to all this data, why not try to feed it into a

computer and see if we can do something clever with it?

Arti�cial Intelligence (AI) applications are emerging and performs many tasks in the world we live in today.

But how can AI be implemented in simple task in the context of clinical trials? In this paper I will try to walk

you trough an example of a rather narrow task, which Deep Learning can help researchers manage clinical

trial work�ows.

Problem description

The type of task I will guide you through is Supervised Learning, and the data is downloaded from

Clinicaltrials.gov.

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 2/25

The goal is to predict the type of Interventional model in a study given a summary text and a title from the

study. This is a multi-class classi�cation problem, meaning that there is more than two classes to be

predicted.

After reading this article, you would be able to implement and develop your own LSTM network for your own

prediction problems.

The process is divided into following steps:

Download trials from link: https://clinicaltrials.gov/AllPublicXML.zip

(https://clinicaltrials.gov/AllPublicXML.zip)

Reading XML �les into .csv �les

Reading .csv �les into pandas dataframe in python

Pre-process the text data

Modelling and training

Evaluation and prediction

The steps can be described and visualized as:

Import Classes and Functions

I will use a Python3 Anaconda environment together with Jupyter Notebook and i will use Tensor�ow

backend. Tensor�ow is an open source library and it is typically used in machine learning for neural networks.

Here is all the required libraries:

https://clinicaltrials.gov/AllPublicXML.zip

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 3/25

In [1]:

Using TensorFlow backend.

1.12.0
2.1.6-tf

import numpy as np # Linear algebra

Data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
from pandas import DataFrame

import xml.etree.ElementTree as ET # Reading xml files

For plotting
import matplotlib.pyplot as plt
import pydot
import pydotplus
import graphviz
from keras.utils.vis_utils import plot_model
from keras.utils import plot_model
from sklearn.manifold import TSNE

For Modelling
import tensorflow as tf
from tensorflow.keras import layers, models, preprocessing, callbacks, optimizers

print(tf.VERSION)
print(tf.keras.__version__)

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Embedding, Input, Add
from tensorflow.keras.layers import LSTM, Bidirectional, GlobalMaxPool1D, Dropout
from tensorflow.keras.preprocessing import text, sequence
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.layers import concatenate
from keras.metrics import categorical_accuracy

For Pre-processing
import string
from string import digits
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from tqdm import tqdm
import re

Other useful modules
import h5py
from statistics import mode
import os
import datetime
import warnings
warnings.filterwarnings('ignore')

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 4/25

Download Clinical Trials

The �rst step is to download all the clinical trials from Clinicaltrials.gov and unpack them into your working

directory. After you have done this we are ready to work with the xml �les. A good idea would be to

investigate the xml �les, you can do this in several editors, I personally prefer Visual Studio Code. Get an

overview of an xml �le and see how it is structured and �nd the information of your interest.

Working with XML and .csv

XML is an inherently hierarchical data format, and the most natural way to represent it is with a tree. Python

has a module for parsing and creating xml data called xml.etree.ElementTreexml.etree.ElementTree. The ElementTree (ET)

represents the whole XML document as a tree. We now want to get the contents from our xml �les we are

interested in. In our case we wish to look at 'nct_id', 'brief_summary', 'brief_title' and 'intervention_model'.

The text from these roots are the text that er going into our .csv �le. As we have many xml �les, we create a

function which iterates through the different �les and return the text from the 4 different roots. We are not

interested in all the xml �les, we only look at Phase 2 or 3 and Interventional studies.

Here is my code for doing this:

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 5/25

In [2]:

We now have a function that returns the text of interest and the text is seperated with ';', which is one of

Out[2]:

'"NCT00496392";" Primary: • To compare the efficacy of nasal fentanyl (NF) to oral transmucosal fentanyl (Actiq®) (here
after Actiq) in the management of breakthrough pain in cancer patients. Secondary: - To compare patients\' general impress
ion and preference of NF and Actiq - To explore the relationship between NF doses and dose of current opioid for breakthr
ough pain (BTP) and the relationship between dose of NF and of background opioid - To assess safety and tolerability of N
F ";"Comparison of Nasal Fentanyl and Oral Transmucosal Fentanyl (Actiq) in Cancer Breakthrough Pain (FT-019-I
M)";"Crossover Assignment"'

Returns ID, Summary, Title and type of Model

def csv_row(xml_file):

 tree = ET.parse(xml_file)

 root = tree.getroot()

 nct_text = ""
 sum_text = ""
 model_text = ""
 ph_text = ""
 title_text = ""

 # Only iterates through Phase 2 and 3 studies
 for ph in root.iter('phase'):
 ph_text = ph.text
 if (ph_text == "Phase 2" or ph_text == "Phase 3"):

 #This bit finds all roots with nct_id which is a sub_root to id_info
 for nct in root.findall('id_info'):
 nctId_text = nct.find('nct_id').text
 nct_text =nctId_text
 #print(nct_text)

 # This bit finds the brief summary text
 for s in root.findall('brief_summary'):
 summary_text = s.find('textblock').text
 sum_text= summary_text
 sum_text = sum_text.replace('\n', '') # Replaces newline with a whitespace
 sum_text = re.sub(' +',' ',sum_text) # Compresses multiple whitespaces to only one
 #print("Summary Text:", sum_text)

 # Get's the official title for the study
 for t in root.iter('brief_title'):
 title_text = t.text

 # This get's the type of intervention_model
 for y in root.iter('intervention_model'):
 model_text = y.text

 total_text = "\"" + nct_text + "\"" + ";" + "\"" + sum_text + "\"" + ";" + "\"" + title_text + "\"" + ";" + "\"" + model_text + "\""

 # This functions returns a text with Nct_Id, brief_summary, title and type of intervention model on the form we intended

 return total_text

csv_row("search_result\\NCT00496392.xml")# This is for checking that the function works

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 6/25

standard seperators in .csv �les. As you can see from this text, it contains symbols, which we are not

interested in when training our model, but more about that later :)

We now wish to write this text into 2 different .csv �les, which is showned below:

In [3]:

As you can see from my code above, we condition on the size of string in foldernames to make an appropriate

division of train and test data. It is approximately about 80% training data and 20% test data. Another

approach for this could be loading the data into a pandas dataframe and use the function train_test_split from

the sklearn module, and here you should specify the test_size. 80/20 split is very common in machine learning

algorithms (Bronshtein, A. 2017, Train/Test Split and Cross Validation in Python.

[https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6]

(https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6%5D)).

We now have 2 .csv �les with containing the data of our interest.

Reading into Pandas

We now wish to read our 2 .csv �les into dataframes in python, and here we can use the module called

pandas. The pandas module has a simple function doing this: pd_read_csvpd_read_csv, and here is how you use it:

In [4]:

rdir = 'Subset_data' # Folders in directory where the all the xml files are placed

with open('train_data.csv', 'w', encoding="utf-8") as csvfile: # Opens a blank csv file
 with open('test_data.csv', 'w', encoding="utf-8") as csvfile1:
 for _, dirs, _ in os.walk(rdir):
 for dir in dirs: # Looks at all the xml folders
 if dir < 'NCT0012': #This is around 80% of the folders
 for subdir, _, files in os.walk(os.path.join(rdir,dir)):
 for file in files:
 name = os.path.join(subdir, file)
 csvfile.write(csv_row(name)) #Writes total_text into a row in to train_data.csv
 csvfile.write("\n") # Skips to next line and do the same
 else: #This is the remaining 20% of the folders
 for subdir, _, files in os.walk(os.path.join(rdir,dir)):
 for file in files:
 name = os.path.join(subdir, file)
 csvfile1.write(csv_row(name)) #Writes total_text into a row in to test_data.csv
 csvfile1.write("\n")

Earlier we saw that the returned text from our function was seperated by ';', so we use this as seperator when reading in the files
tr_df = pd.read_csv("train_data.csv", sep=';', header=None,error_bad_lines=False, warn_bad_lines=False)
t_df = pd.read_csv("test_data.csv", sep=';', header=None,error_bad_lines=False, warn_bad_lines=False)

Give the data sets appropiate column names
tr_df.columns = ['Nct_id', 'Summary', 'Title',"Model"]
t_df.columns = ['Nct_id', 'Summary', 'Title',"Model"]

We drop all the observations containing NaN's (missing values)
train = tr_df.dropna()
test = t_df.dropna()

https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 7/25

This now gives us 2 dataframes with rows and columns corresponding to our .csv �les. As you can see in my

code i have speci�ed the column names myself. It is now a good idea to visualize your response variable and

plot the distribution. In our case it is a categorical variable, so this will be a bar plot. In the �gure below I have

plotted the different types of models from a small subset of our data and the belonging code is also speci�ed.

In [5]:

As you can see in the plot there are many Parrallel and Single Group study designs compared to the others.

This is only a small subset of the data from Clinicaltrials.gov, so we can still be able to train a computer to

predict the other categories. However we are not interested in Factorial or Sequential Assignment, so we will

collect this into one category we call 'Other'. This means that our response variable now can take 4 different

values.

Some Machine Learning algorithms supports categorical values, but there are many cases where the

algorithms does not. The data analyst is therefore faced the challenge of turning these text attributes into

numerical values for further processing. There are many different ways of encoding categorical variables, but

one approach could be 'Label Encoding'. This is simply converting the different values in our response to a

number. This is easily done in python:

import seaborn as sns
sns.set(style="darkgrid")
ax1 = sns.countplot(x="Model", data=train, order = train['Model'].value_counts().index)
ax1.set_title("Barplot for types of Intervention models")
for item in ax1.get_xticklabels():
 item.set_rotation(45)

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 8/25

In [6]:

The index in the left side of the dataframe just corresponds to the rows from the .csv �le.

By default python will encode the categorical values by alphabetic order, so it will be encoded as:

0: Crossover Assignment

1: Other

2: Parallel Assignment

3: Single Group Assignment

Label Encoding as you can see is straightforward and easily implemented, but it has the disadvantage that the

numeric values can be “misinterpreted” by the algorithms. The value 3 is obviously larger than the value 1,

but the category 'Single Group Assignment' is not larger than 'Crossover Assignment'. This is the case

whenever your categorical variable is nominal, which means that there is no natural ordering between the

categories.

Another common approach is called one hot encoding (Francois Chollet, 2018. Deep Learning with Python.

Manning Publications Co., Shelter Island, NY, 361 pp.). The basic idea is to convert each category into a new

column as a dummy variable (0/1). This will not weight the values as in label encoding, but it does add more

columns to the data set. Pandas has a feature which support this:

Out[6]:

Nct_id Summary Title Model Model_type

9 NCT00000113 To evaluate whether progressive
addition lens...

Correction of Myopia Evaluation
Trial (COMET)

Parallel
Assignment 2

10 NCT00000114 To determine whether supplements
of vitamin A...

Randomized Trial of Vitamin A and
Vitamin E Su... Other 1

11 NCT00000115 To test the efficacy of
acetazolamide for the...

Randomized Trial of Acetazolamide
for Uveitis-...

Crossover
Assignment 0

12 NCT00000116 The purpose of this trial is to
determine whe...

Randomized Trial for Retinitis
Pigmentosa

Parallel
Assignment 2

21 NCT00000125 To determine whether medical
reduction of int...

Ocular Hypertension Treatment
Study (OHTS)

Parallel
Assignment 2

We want 4 categories: Crossover, Parallel, Single Group and Other
train.loc[(train['Model'] == 'Factorial Assignment'), 'Model'] = 'Other'
train.loc[(train['Model'] == 'Sequential Assignment'), 'Model'] = 'Other'
test.loc[(test['Model'] == 'Factorial Assignment'), 'Model'] = 'Other'
test.loc[(test['Model'] == 'Sequential Assignment'), 'Model'] = 'Other'

Convert from object to category
train['Model'] = train['Model'].astype('category')
test['Model'] = test['Model'].astype('category')

#Label encoding
train["Model_type"] = train["Model"].cat.codes
test["Model_type"] = test["Model"].cat.codes
train.head() # Prints the first 5 rows of the data

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 9/25

In [7]:

I suggest, as i do in my code, to print the shape of the data sets or maybe print the �rst 5 rows to verify. Before

we only had 4 columns and now we have 8, where the last 4 corresponds to the dummy variable for each of

the categories. In our case we only have these 4 mentioned categories, but it can be challenging to manage

this is, if you have a large amount of categories.

Text Preprocessing

When dealing with textual data, it needs to be cleaned and encoded to numerical values before feeding them

into machine learning models, this process of cleaning and encoding is called Text Preprocessing.

I will perform basic cleaning steps on the two features 'Title' and 'Summary', so it will be ready to be fed into a

classi�er. (Siddiqi, S. 2018, Text Preprocessing for Beginners - Data Cleaning.

[https://www.kaggle.com/sabasiddiqi/workbook-1-text-pre-processing-for-beginners]

(https://www.kaggle.com/sabasiddiqi/workbook-1-text-pre-processing-for-beginners%5D))

The following steps will be performed:

Removal of punctuation

Removal of newline symbols (\n)

Removal of digits

Splitting combined words

Converting words to lowercase

Splitting each sentence using delimiter

Converting words to base form

Here is my code for the above pre-processing steps:

In [8]:

Train shape: (4028, 8)
Test shape: (1049, 8)

[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\Josva\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!

Out[8]:

True

One Hot Encoding
train_dummy = pd.get_dummies(train, columns=['Model'], prefix =['Model'])
test_dummy = pd.get_dummies(test, columns=['Model'], prefix =['Model'])
print("Train shape:",train_dummy.shape)
print("Test shape:",test_dummy.shape)

This needs to be download for the lemmatization (converting to base form)
nltk.download("wordnet")

https://www.kaggle.com/sabasiddiqi/workbook-1-text-pre-processing-for-beginners%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 10/25

In [9]:

def text_cleaner(dataframe_org):
 dataframe = dataframe_org.copy()

 columns = ['Summary', 'Title']

 for col in columns:
 dataframe[col] = dataframe[col].str.translate(str.maketrans(' ', ' ', string.punctuation)) # Remove punctuation
 dataframe[col] = dataframe[col].str.translate(str.maketrans(' ', ' ', '\n')) # Remove newlines
 dataframe[col] =dataframe[col].str.translate(str.maketrans(' ', ' ', digits)) # Remove digits
 dataframe[col] =dataframe[col].apply(lambda tweet: re.sub(r'([a-z])([A-Z])',r'\1 \2',tweet)) # Split combined words
 dataframe[col] =dataframe[col].str.lower() # Convert to lowercase
 dataframe[col] =dataframe[col].str.split() # Split each sentence using delimiter

 # This part is for converting to base form
 lemmatizer = WordNetLemmatizer()
 sum_l=[]
 tit_l = []
 for y in tqdm(dataframe[columns[0]]): # tqdm is just a progress bar, an this loop only looks at summaries
 sum_new=[]
 for x in y: # Looks at words in every summary text
 z=lemmatizer.lemmatize(x)
 z=lemmatizer.lemmatize(z,'v') # The v specifies that it is in doubt of example a word is a noun or verb, it would consider it a verb.
 sum_new.append(z)
 y = sum_new
 sum_l.append(y)
 for w in tqdm(dataframe[columns[1]]): # Looks at titles
 tit_new=[]
 for x in w: # Every word in the titles
 z=lemmatizer.lemmatize(x)
 z=lemmatizer.lemmatize(z,'v')
 tit_new.append(z)
 w = tit_new
 tit_l.append(w)

 # This will join the words into strings as in the original data, just pre-processed and put into list
 sum_l2 = []
 for col in sum_l:
 col = ' '.join(col)
 sum_l2.append(col)
 tit_l2 = []
 for col in tit_l:
 col = ' '.join(col)
 tit_l2.append(col)

 # Data obtained after Lemmatization is in array form, and is converted to Dataframe in the next step.
 sum_data=pd.DataFrame(np.array(sum_l2), index=dataframe.index,columns={columns[0]})
 tit_data=pd.DataFrame(np.array(tit_l2), index=dataframe.index,columns={columns[1]})

 frames = [sum_data, tit_data]
 merged = pd.concat(frames, axis=1)
 return merged

def create_tok(train_data, MAX_FEATURES):
 clean_data = text_cleaner(train_data)

 tokenizer_sum = text.Tokenizer(num_words=MAX_FEATURES) # Keep the 20.000 most frequent words
 tokenizer_tit = text.Tokenizer(num_words=MAX_FEATURES)

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 11/25

I will now try to explain some of the above code, besides the comments i have made in transit.

We need to keep in mind that deep learning models does not truly understand text in human sense, but they

can be great for solving simple textual tasks. Like all neural networks, deep learning models can't be fed with

raw text as input, text data must be encoded as numbers. Keras provides the Tokenizer class for preparing

text for deep learning (Francois Chollet, 2018. Deep Learning with Python. Manning Publications Co., Shelter

Island, NY, 361 pp.). This Tokenizer is �tted on the text data as you can see in my code.

The text.Tokenizer() is chopping the sequences of text into sequences of 'tokens''tokens', where these tokens

represents the meaning of the words in a dictionary. The 'tokenized_list''tokenized_list' will now be a list of lists containing

only integers representing the words, and the 'X''X' will be a list of lists.

The .pad_sequences() is used to ensure that all sequences in a list has the same length. This is done by padding

0's in the beginning of each sequence until each sequence has the same length as the longest sequence. So if

the sequence for example has length 200, the �rst 100 elements will be �lled with 0's.

We can now run this function on our train and test data sets:

 # Summary Text
 summary_list = clean_data['Summary']
 tokenizer_sum.fit_on_texts(list(summary_list)) # Builds the word index

 #Title Text
 title_list = clean_data['Title'] # Text from Title
 tokenizer_tit.fit_on_texts(list(title_list))

 return tokenizer_sum, tokenizer_tit

def pre_process(dataframe, tokenizer, col, MAXLEN):
 clean_data = text_cleaner(dataframe)
 tokenized_list = tokenizer.texts_to_sequences(clean_data[col])
 X = sequence.pad_sequences(tokenized_list, maxlen=MAXLEN)

 return X

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 12/25

In [10]:

We now have every thing we need to train a deep recurrent neural network. But before doing that I will just

take some time and brie�y explain something about LSTM network.

Long short-term memory

The Long Short-Term Memory network or LSTM network is a type of recurrent neural network used in deep

learning. It was developed becuase of the lack of RNN, and LSTM can solve the problem long-term

dependency, beacuse it uses gates to control the memorizing process.

LSTM is typically used for language modeling, sentiment analysis and text prediction. It has the ability to

forget, remember and update information, and this pushes it one step ahead of RNN's. If you want to perform

Supervised Learning with sequences as input, you want to use a gated recurrent net such as LSTM or GRU. If

your input is for example images or of other topological structure the best approach would be a convolutional

network. (Goodfellow, I. and Bengio, Y. and Courville, A. 2016. Deep Learning. MIT Press. 781 pp.

[https://www.deeplearningbook.org/] (https://www.deeplearningbook.org/%5D))

Below you see a �gure that visualize how an LSTM network is structured.

100%|█████████████████████████████████████| 4028/4028 [00:04<00:00, 953.37it/s]
100%|████████████████████████████████████| 4028/4028 [00:00<00:00, 8959.08it/s]
100%|████████████████████████████████████| 4028/4028 [00:02<00:00, 1725.94it/s]
100%|████████████████████████████████████| 4028/4028 [00:00<00:00, 9076.16it/s]
100%|████████████████████████████████████| 4028/4028 [00:02<00:00, 1755.73it/s]
100%|████████████████████████████████████| 4028/4028 [00:00<00:00, 9315.45it/s]
100%|████████████████████████████████████| 1049/1049 [00:00<00:00, 1879.93it/s]
100%|████████████████████████████████████| 1049/1049 [00:00<00:00, 8392.00it/s]
100%|████████████████████████████████████| 1049/1049 [00:00<00:00, 1872.54it/s]
100%|████████████████████████████████████| 1049/1049 [00:00<00:00, 8418.96it/s]

MAX_FEATURES = 20000 # Size of vocabluary
MAXLEN = 300 # Size of each text sequence, you can tune this depending on the mean length of you text sequences

tok_sum, tok_tit = create_tok(train_dummy,MAX_FEATURES)

The following are used for model.fit
X_sum = pre_process(train_dummy, tok_sum, 'Summary', MAXLEN)
X_tit = pre_process(train_dummy, tok_tit, 'Title', MAXLEN)

This is used for prediction
X_sum_test = pre_process(test_dummy, tok_sum, 'Summary', MAXLEN)
X_tit_test = pre_process(test_dummy, tok_tit, 'Title', MAXLEN)

list_classes = ["Model_Crossover Assignment", "Model_Other", "Model_Parallel Assignment", "Model_Single Group Assignment"] # The 4 cate
y = train_dummy[list_classes].values

y_test is used for model.evaluate later on
y_test = test_dummy[list_classes].values

https://www.deeplearningbook.org/%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 13/25

I will now try to brei�y explain the �gure.

There are 3 main components of LSTM units:

1. It can forget unnecessary information. A Sigmoid layer, which outputs a number between 0 and

1 is used to forget or remember information. It looks at the current input (Xt) and the previous

output (h(t-1)), and decides which part of the previous output there should be removed (if the

sigmoid returns a 0). This we call the forget gate, f(t), where the output is f(t) * c(t-1), where c(t-

1) is the memory from the last LSTM unit.

2. Then it needs to decide which information to store from the new input X(t). Sigmoid decides if

the information should be updated or ignored, and a tanh layer creates a vector of values for

new input. If these 2 are muliplied, it will update the new cell state. The new memory from

these 2 layers are added to the old memory (c(t-1)) to give us c(t).

3. The last step is to decide what the output should be. A sigmoid layer decides which parts from

the cell state (c(t)) we will output. Then the cell state is put through a tanh, which will generate

all possible values and is mulitplied with the output from the sigmoid gate. So the output is only

the parts we decide to output.

So in a few words a LSTM model will not learn from the immediate dependency, it will learn from long term

dependency. (Sinha, M. 2018. Understanding LSTM and its quick implementation in Keras for sentiment

analysis. [https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-

https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 14/25

sentiment-analysis-af410fd85b47] (https://towardsdatascience.com/understanding-lstm-and-its-quick-

implementation-in-keras-for-sentiment-analysis-af410fd85b47%5D))

Building a model

Now we have a little idea of what a LSTM network is and we will now try to build one.

My code for this is showned below, and I will try to explain it afterwards.

https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 15/25

In [15]:

__
Layer (type) Output Shape Param # Connected to
===
===========
input_3 (InputLayer) (None, 300) 0
__
input_4 (InputLayer) (None, 300) 0
__
concatenate_1 (Concatenate) (None, 600) 0 input_3[0][0]
 input_4[0][0]

__
embedding_1 (Embedding) (None, 600, 50) 1000000 concatenate_1[0][0]
__
lstm_1 (LSTM) (None, 50) 20200 embedding_1[0][0]
__
dropout_2 (Dropout) (None, 50) 0 lstm_1[0][0]
__
dense_2 (Dense) (None, 50) 2550 dropout_2[0][0]
__
dropout_3 (Dropout) (None, 50) 0 dense_2[0][0]
__
batch_normalization_1 (BatchNor (None, 50) 200 dropout_3[0][0]
__
dense_3 (Dense) (None, 4) 204 batch_normalization_1[0][0]
===
===========
Total params: 1,023,154
Trainable params: 1,023,054
Non-trainable params: 100
__

def get_con_model():
 embed_size = 50 # How big each word vector should be

 inp_sum = Input(shape=(MAXLEN,))
 inp_title = Input(shape=(MAXLEN,))

 total_inp = concatenate([inp_sum, inp_title]) # Merge the 2 inputs

 embed_layer = Embedding(MAX_FEATURES, embed_size)(total_inp)
 lstm_layer = LSTM(50)(embed_layer)
 layer1 = Dropout(0.1)(lstm_layer) # Regularization method, has the effect of reducing overfitting
 layer2 = Dense(50, activation="relu")(layer1) # The relu function can return very large values
 layer3 = Dropout(0.1)(layer2) # Again regularization
 layer4 =BatchNormalization()(layer3) # Maintains the mean activation close to 0 and the activation standard deviation close to 1
 layer5 = Dense(4, activation="softmax")(layer4) # Only outputs values between 0 and 1, this is the final layer

 model_con = Model(inputs=[inp_sum,inp_title], outputs=layer5)
 model_con.compile(loss='categorical_crossentropy', # This is the loss function, and this type of function is used when solving categorical classi
 optimizer='rmsprop', # Algorithm that update network weights iterative based in training data
 metrics=['accuracy']) # This is our statistical measure

 return model_con

con_model = get_con_model()

Gets informations about the layers in the model, including output, input and number of parameters:
con_model.summary()

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 16/25

I suggest to always look at the summary and to visualize your model. Here are some few reasons to that:

To con�rm the layer orderTo con�rm the layer order. It is easy to make mistakes and adding layer in the wrong order, and the plot

of the model can help you con�rm that it is done right.

To con�rm parametersTo con�rm parameters. Number of parameters are given in the model.summary, and it can help you spot

possible layers to reduce number of parameters.

To con�rm the output shape of the layersTo con�rm the output shape of the layers. In complex networks it can be dif�cult to specify the shape of

input data. The summary and the plot can help you con�rm the shapes as you intended.

We will now visualize our network, and to do so you need to make sure you have Graphviz installed

separately on your system, not just in your project directory. It can be downloaded from

https://www.graphviz.org/download/ (https://www.graphviz.org/download/).

Here is the code for plotting our model:

In [12]:

os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/release/bin/'
plot_model(con_model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

https://www.graphviz.org/download/

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 17/25

If we walk through the steps, we see the �rst thing is the 2 input layers, and we do not differ between

MAXLEN (input) for summary and title text, for simplicity. Next we concatenate the 2 input layers before

embedding, and this is primarily done to reduce the number of parameters in the model, because number of

parameters from an embedding layer is MAX_FEATURESMAX_FEATURES times embed_sizeembed_size, which in this case is 1 million

parameters. Then comes the Embedding layer, which takes the concanated input layer as input. The meaning

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 18/25

of word embedding is to map human language into a geometric space. In this space we would like synonyms

to be embedded into similar word vectos, and that the geometric distance between 2 word vectors would

relate to the semantic distance. The word representation with word embedding become relatively low

dimensional and dense, beacuse it is learned from data. This is a clear bene�t compared to one-hot word

vectors, which is high dimensional and hardcoded. (Francois Chollet, 2018. Deep Learning with Python.

Manning Publications Co., Shelter Island, NY, 361 pp.)

For word embedding to make a little bit more sense, i will now try to visualize it:

In the �gure above, we have 4 words embedded in 2D: Man, King, Woman and Queen. With vector

representations, the semantic relationships between the words can be encoded as geometric

transformations. In this case the same vector allows us to go from Man to King and from Woman to Queen.

We could interpret this vector as "From gender to royal status". In the same way we could also consider the

vector which allows us to go from King to Queen and from Man to Woman.

The type of word embedding depends on your problem, and you have to consider in which context it is used.

Their exists some pretrained embedding �les on the internet, which may can be useful for your task (Fx

GloVe). We chosed to use the embedding layer from the keras.layers.

The next layer in our network is an LSTM layer, where the output from the embed_layerembed_layer is given is input. Here

the number of LSTM units is set to 50, which is the dimensionality of the output space of this layer. After the

LSTM layer we have a Dropout layer. Dropout is a common regularization technique (Francois Chollet, 2018.

Deep Learning with Python. Manning Publications Co., Shelter Island, NY, 361 pp.), which randomly select

neurons that are ignored during the training and the weight updates are not applied to the neuron. The

dropout rate, which in this case is set to 0.1, corresponding to 10%. You can tune this hyperparamter while

experimenting building your own model.

After the �rst dropout layer we have a Dense layer, which is just a regular layer of neurons in a neural

network. Each neuron recieves input from all the neurons in the previous layer, thus densely connected. In

this layer we used the activation function 'relu''relu' which range is from (0,inf), and with this function we can pass

the maximum of the error through the network. A result of this layer could be very large outputs, which the

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 19/25

network �nds very challenging to handle. We use again a dropout layer, with the same 10% dropoutrate. The

next layer is BatchNormalizationBatchNormalization which is a way of mantain the mean activation to be close to 0 and the

standard deviation to be close to 1, this handles the possible large outputs from the dense layer with our relu

function (Keras Documentation, [https://keras.io/layers/normalization/]

(https://keras.io/layers/normalization/%5D)). Our �nal layer uses softmaxsoftmax as activation function, and this

function only outputs probabilities range. The range is therefor from 0 to 1 and the sum of all the

probabilities will be equal to one. The reason why we set units in the Dense layer to 4, is that we have 4

catogories, and the model returns probabilities for each of these categories, where the target has the highest

probability.

Before we train our model, there is a few parameters we should specify. We need to give the model.�t a

batch_sizebatch_size, which is the number of samples that will be propagated through the network. We have set this to

32, which means that the algorithm will take the �rst 32 samples and train the network. Next it takes the

second 32 samples and trains the network again. We continue with this process until we have propagated all

samples in our data through the network.

A bene�t of using af batch size smaller than the number of samples, is that it requiers less memory. This can

be very pro�table when having a large data set. Our network will also train faster. The reason for this is that

we update the network parameters after each propagation, but if we used all the samples it will only update 1

time (2015. What is batch size in neural network?,

[https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network]

(https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network%5D)).

We also need to specify something called epochepoch. An epoch is simply the number of passes over the entire

data set. This number can vary a lot, but for a start we will set it to 10 and later on we will set it lower, but

more about that in a minute. In our case we have 3625 samples and since we chosed our batch size to be 32, it

will take 3625/32 = 114 iterations to complete one epoch.

We will now train our model and i will explain rest of the code below after the training.

https://keras.io/layers/normalization/%5D
https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 20/25

In [13]:

You can safely ignore the warning. It's a preemptive warning from TensorFlow when it cannot be certain of

the size of the generated tensor

The model has now trained on our training data, and i will now explain what is actually writtin in my code and

why i have done it the way i did.

c:\users\josva\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gradients_impl.py:112: UserWarning: C
onverting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "

c:\users\josva\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gradients_impl.py:112: UserWarning: C
onverting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "

Train on 3625 samples, validate on 403 samples
Epoch 1/10

Epoch 00001: val_loss improved from inf to 0.93307, saving model to weights_base.hdf5
- 42s - loss: 0.9662 - acc: 0.6825 - val_loss: 0.9331 - val_acc: 0.6303

Epoch 2/10

Epoch 00002: val_loss improved from 0.93307 to 0.83566, saving model to weights_base.hdf5
- 41s - loss: 0.6423 - acc: 0.7702 - val_loss: 0.8357 - val_acc: 0.6576

Epoch 3/10

Epoch 00003: val_loss did not improve from 0.83566
- 41s - loss: 0.5456 - acc: 0.8127 - val_loss: 0.8634 - val_acc: 0.6179

Epoch 4/10

Epoch 00004: val_loss improved from 0.83566 to 0.79544, saving model to weights_base.hdf5
- 43s - loss: 0.4634 - acc: 0.8381 - val_loss: 0.7954 - val_acc: 0.6799

Epoch 5/10

Epoch 00005: val_loss did not improve from 0.79544
- 41s - loss: 0.3956 - acc: 0.8593 - val_loss: 0.8982 - val_acc: 0.6799

Epoch 6/10

Epoch 00006: val_loss did not improve from 0.79544
- 41s - loss: 0.3406 - acc: 0.8797 - val_loss: 1.0088 - val_acc: 0.6849

Epoch 7/10

Epoch 00007: val_loss did not improve from 0.79544
- 41s - loss: 0.3004 - acc: 0.8949 - val_loss: 1.0829 - val_acc: 0.6625

batch_size = 32 # number of samples that will be propagated through the network.
epochs = 10 # Number of passes over the entire data set

file_path="weights_base.hdf5"

checkpoint = ModelCheckpoint(file_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min') # Verbose means that it prints acc a
early = EarlyStopping(monitor="val_loss", mode="min", patience=3) # EarlyStopping should only be includede when tuning your model

callbacks_list = [checkpoint, early]

history = con_model.fit([X_sum, X_tit], y, batch_size=batch_size, epochs=epochs, validation_split=0.1, callbacks=callbacks_list, verbose=2) # M

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 21/25

A common problem in Machine learning algorithms is the term called over�tting. If we train our model we will

see that the training loss decreases with every epoch and the training accuracy increases. A model that

performs better on training data will not necessarily be a model that will do better on completely new data. A

way of preventing your model to over�t, we have made someting called a validation split. (Brownlee, J. 2016.

Over�tting and Under�tting With Machine Learning Algorithms.

[https://machinelearningmastery.com/over�tting-and-under�tting-with-machine-learning-algorithms/]

(https://machinelearningmastery.com/over�tting-and-under�tting-with-machine-learning-algorithms/%5D))

In this split we will save 10% of our training data as validation. As you can see in my code, i have made the

validation split in the model.�t and speci�ed an early stopping. The early stopping is set to avoid keep training

the model when we don't see an improvement in validation loss. Sometimes local minima can occur, and this is

why you give early stopping some patience, and in our code we set it to 3, which means if we don't see an

improvement 3 epochs in a row, the model will stop training.

We now visualize the model accuracy and loss from our training:

https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/%5D

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 22/25

In [14]:

From the above plots we set the number of epochs to 4 and remove the early stopping and validation split

and now use all of the training data in our training.

Final evaluation of the model
%matplotlib inline
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train','val'], loc='upper left')
plt.show()

%matplotlib inline
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train','val'], loc='upper left')
plt.show()

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 23/25

In [16]:

In [17]:

We see that this gives us an accuracy of around 82%, but let's evaluate the model and see how good it is to

handle completely new data (test data)

In [18]:

We now get an accuracy of almost 72 %, and this is not a bad result at all. We have only trained the model on

a small subset of the total data set (only 4000 studies) and it seems that the model is doing quite okay, and we

can generalize it to complete untrained data.

Prediction

We have now trained and evaluated our LSTM network. But to get a feeling about how it actually works and

to demonstrate how it can be used for new clinical trials i will now give some examples of some new data and

make prediction from that.

In my code below i have made a function which takes a Title and a Summary and put into a pandas dataframe.

This data is going through the same pre-processing as our train and data set, so it is ready to be fed into our

model.

c:\users\josva\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gradients_impl.py:112: UserWarning: C
onverting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "

c:\users\josva\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gradients_impl.py:112: UserWarning: C
onverting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
 "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "

Epoch 1/4
- 48s - loss: 0.9551 - acc: 0.6696

Epoch 2/4
- 44s - loss: 0.6527 - acc: 0.7686

Epoch 3/4
- 44s - loss: 0.5618 - acc: 0.7972

Epoch 4/4
- 51s - loss: 0.4942 - acc: 0.8222

Out[18]:

[0.7706552325145077, 0.7159199235096105]

batch_size = 32
epochs = 4

file_path="weights_base.hdf5"
checkpoint = ModelCheckpoint(file_path, monitor='loss', save_best_only=True, mode='min')

history = con_model.fit([X_sum, X_tit], y, batch_size=batch_size, epochs=epochs, callbacks=[checkpoint], verbose=2)

con_model.load_weights(file_path)
con_model.evaluate([X_sum_test, X_tit_test], y_test, verbose=2) # Returns loss value and the metric specified, so in this case, model accuracy

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 24/25

In [19]:

We have taking a study, which is not a part of our train data and we will now try to predict the type of

intervention model from the summary text and title. First as you see below we try where we specify the full

summary text and all of the title:

In [20]:

We get a prediction of 89%, that this study is a Parallel Assignment and this is also the case. But what if we

can just use the title as predictor and give the model an empty summary? Let's look at that!

In [21]:

In this case we get accurat the same prediction as with the full summary text. The title is almost always a

short and compact version of the summary, so it contains many of the same words, which our model most

likely �nd interesting. It therefor make great sense, that the prediction is identical. Let's now try to give the

model some few key words from the title and still let the summary text be empty and see what happens.

100%|██| 1/1 [00:00<00:00, 1000.07it/s]
100%|██| 1/1 [00:00<?, ?it/s]
100%|██| 1/1 [00:00<00:00, 1000.07it/s]
100%|██| 1/1 [00:00<?, ?it/s]

Out[20]:

array([[0.01352272, 0.01536347, 0.8943102 , 0.07680359]], dtype=float32)

100%|██| 1/1 [00:00<?, ?it/s]
100%|██| 1/1 [00:00<?, ?it/s]
100%|██| 1/1 [00:00<?, ?it/s]
100%|██| 1/1 [00:00<00:00, 1000.07it/s]

Out[21]:

array([[0.01352273, 0.01536347, 0.8943102 , 0.07680362]], dtype=float32)

def my_pred(Title, Summary):

 original_data = pd.DataFrame({ 'Summary' : [Summary],
 'Title': [Title]})

 # Clean data
 X_pred_sum = pre_process(original_data, tok_sum, 'Summary', MAXLEN)
 X_pred_tit = pre_process(original_data, tok_tit, 'Title', MAXLEN)

 con_model.load_weights(file_path)
 prediction = con_model.predict([X_pred_sum, X_pred_tit])

 return prediction

Study_sum = "This clinical trial will be performed in previously untreated patients with metastatic colorectal cancer. The study will evaluate the s
Study_tit = "Study to Evaluate the Safety, Tolerability and Efficacy of FOLFOX + CT-011 Versus FOLFOX Alone"
my_pred(Study_tit, Study_sum)

empty_sum = ""
my_pred(Study_tit, empty_sum)

20/12/2018 Article

http://localhost:8888/notebooks/Article.ipynb 25/25

In [22]:

We see that our model now predicts 87%, so just a little bit lower than before. So whether the model predicts

what type of model it is, depends only on some few key words, and it is still accurate without being speci�c in

the title our summary if the study is for example Parallel or Crossover.

Summary

In this article you have learned how to build a LSTM recurrent neural network for categorical prediction in

Python and using Tensor�ow (Keras) deep learning network.

Speci�cally important things:

Prepraring textual data to feed into a neural network

How LSTM can be useful in the context of clinical trials

How to create an LSTM network for categorical prediction

How to evaluate a model

Make predictions from a model

100%|██| 1/1 [00:00<?, ?it/s]
100%|██| 1/1 [00:00<?, ?it/s]
100%|███| 1/1 [00:00<00:00, 500.04it/s]
100%|██| 1/1 [00:00<00:00, 1000.07it/s]

Out[22]:

array([[0.01274031, 0.01423935, 0.8709181 , 0.10210223]], dtype=float32)

key_tit = "Study Evaluate Safety, Tolerability Versus Alone"
my_pred(key_tit, empty_sum)

